
October 29, 2015 Pavia, Italy

Performance-based Seismic Design of 
Nonstructural Building Components: The 
Next Frontier of Earthquake Engineering

André Filiatrault, PhD, Eng.
Professor of Structural Engineering

State University of New York at Buffalo, USA
&

Institute for Advanced Study IUSS Pavia, Italy



October 29, 2015 Pavia, Italy

Importance of Considering Nonstructural 
Components in Seismic Design

• Nonstructural Components represent the major 
portion of the total investment in typical buildings.

 

Fig 1. Investments in building construction (Miranda 2003) 
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Importance of Considering Nonstructural 
Components in Seismic Design

• Nonstructural damage can limit severely the functionality of 
critical facilities, such as hospitals.

Emergency Room of Veteran Administration Hospital following the 1994 Northridge Earthquake in California
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Importance of Considering Nonstructural 
Components in Seismic Design

• Failure of Nonstructural Components can become a safety 
hazard or can hamper the safe movement of occupants 
evacuating or of rescuers entering buildings.

People being lowered through the windows in the  17-storey Forsyth Barr 

building due to failure of the stairs in the February 2011 earthquake
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Performance of Nonstructural Components 
in Recent Earthquakes

– 2010 Maule, Chile Earthquake

• Impact of Nonstructural damage on airports
– US$40 million for repairs of Nonstructural damage at SCL.

– US$10 million loss to Lan Airlines.

– Two thirds of the Chilean air traffic interrupted for several days.
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Challenges Associated with the Seismic 
Design of Nonstructural Building 

Components 

– Few information available giving specific guidance on the 
seismic design of nonstructural building components for 
multiple-performance levels.

– Limited basic research results available. 

• Empirical seismic regulations and guidelines for Nonstructural 
Components.

• Design information for the most part is based on judgment and 
intuition rather than on experimental and analytical results.
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The FEMA E-74 Methodology

• Intended Audience:

– Non-engineer audience located 
within the US.

– Design professionals not experienced 
with the seismic protection of 
nonstructural components.

• Main Objectives:

– Explain the sources of nonstructural 
earthquake damage. 

– Describe methods for reducing the 
potential risks in simple terms.

Available free online at:
http://www.fema.gov/library/viewRecord.do?id=4626
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The FEMA E-74 Methodology

• Retrofit/Design Methods

– Non-Engineered Design

• Mitigation details that do not require engineering design.

– Prescriptive Design

• Relies on published standards for specific types of 
Nonstructural Components without the need for an 
engineer.

– Engineering Design

• Relies on building codes and standards and requires design 
by an engineer.
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The FEMA E-74 Methodology

• Retrofit/Design Methods

– Prescriptive Design
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Direct and Cascading Analysis Methods
• Direct Analysis Method

– Modeling of structural and Nonstructural 
Components.

– Ground input motions.
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Direct and Cascading Analysis Methods
• Challenges with Direct Analysis Method

– Differences in order of magnitudes of properties of structural 
and Nonstructural Components often makes numerical models 
ill-conditioned. 

– Natural frequencies of Nonstructural Components can 
coincide with natural frequencies of the structure causing
closely spaced modes and highly correlated modal responses.

– Non-classical damping modes.
– Structural system and the Nonstructural Components typically 

not selected and designed at the same time in a construction 
project making a combined analysis difficult from a scheduling 
point of view.

– Limited application to very simple Nonstructural building 
Components.
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Direct and Cascading Analysis Methods
• Floor Response Spectrum 

(FRS) Method
– First obtain the response 

spectrum at the location 
in the structure where a 
Nonstructural element is 
attached (the floor 
response spectrum) and 
then using this spectrum 
to estimate its seismic 
response.
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Direct and Cascading Analysis Methods
• Generation of a Floor Response Spectrum

– Conduct a dynamic analysis of the structure by itself under a 
ground motion to calculate the horizontal acceleration time-
history of the floor on which the Nonstructural element is 
attached.

– Compute the response spectrum of this floor acceleration to 
obtain the floor response spectrum.

– If a simplified floor design spectrum needs to be constructed 
for a given structure, then the process needs to be repeated 
for an ensemble of ground motions representative of the 
selected design seismic hazard level at the construction site. 
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Direct and Cascading Analysis Methods
• Generation of a Floor Response Spectrum

– Direct generation of floor response spectrum using 
approximate methods. 

– Recent procedure proposed by Sullivan et al. (2013); 
Calvi et al. (2014):

• Consider effects of:
– Dynamic filtering; Elastic damping; Earthquake intensity  
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Seismic Design Requirements for 
Nonstructural Building Components in 

Europe
• Equivalent Static Design Forces

– Horizontal equivalent static design forces, Fa, to be 
applied at the element’s center of gravity:
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Seismic Qualification Testing of 
Nonstructural Components

• Special seismic qualification requirements for 
designated seismic systems included in Chapter 13 of 
ASCE 7-10 Standard in the United States.
– A designated seismic system is a Nonstructural element with 

an importance factor Ip = 1.5 that is required to remain 
functional after a design earthquake. 

• Three possible qualification methods:
– Analysis (difficult)
– Experience Data (limited data available)
– Testing (easy but can be expensive)
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Seismic Qualification Testing of 
Nonstructural Components

• ICC-ES AC-156 Test Protocol
– Referred by Section 13.2 of  

ASCE 7-10

– Components with 
fundamental frequencies ≥ 
1.3 Hz

– Post-test functional 
verification:
• Ip = 1.0: Life Safety

• Ip = 1.5: Continued Operation

– To be converted into an   
ASCE Standard.
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Seismic Qualification Testing of 
Nonstructural Components

• ICC-ES AC-156 Required Response Spectrum (RRS)
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Seismic Qualification Testing of 
Nonstructural Components

• ICC-ES AC-156 Test Input Motions
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Seismic Qualification Testing of 
Nonstructural Components

• ICC-ES AC-156 Qualification of Suspended Ceilings
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Use of Advanced Technologies

• Seismic Isolation of Steel Storage Racks
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Seismic Fragility Analysis of 
Sprinkler Piping Systems: A Case Study

1. Cyclic testing of sprinkler piping joints
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Seismic Fragility Analysis of 
Sprinkler Piping Systems: A Case Study

1. Cyclic testing of sprinkler piping joints

– Cyclic response – 50 mm (2 in.) diameter pipes
 Black Iron with Threaded Joint

Schedule 10 Steel with 

Groove-Fit Connection

CPVC with Cement Joint

Schedule 40 Steel with 

Groove-Fit Connection
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1 in. = 25.4 mm
1 kip = 4.45 kN
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Seismic Fragility Analysis of 
Sprinkler Piping Systems: A Case Study

2. Fragility analysis of sprinkler piping joints

Note:
1 in. = 25.4 mm
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Seismic Fragility Analysis of 
Sprinkler Piping Systems: A Case Study

3. Hysteretic modeling of sprinkler piping joints

– Pinching4 Material Model (OpenSees)

– 36 parameters for definition 
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Seismic Fragility Analysis of 
Sprinkler Piping Systems: A Case Study

3. Hysteretic modeling of sprinkler piping joints
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Seismic Fragility Analysis of 
Sprinkler Piping Systems: A Case Study

4. Seismic testing of sprinkler piping subsystems
• Long Branch Lines – Level 2

• Main Line and Riser – Level 1
Legend Note

4-way seismic brace

Sprinkler pipe run

Sprinkler head

Vertical hanger

Lateral bracing

Wire restraint
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Seismic Fragility Analysis of 
Sprinkler Piping Systems: A Case Study

4. Seismic testing of sprinkler piping subsystems
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Seismic Fragility Analysis of 
Sprinkler Piping Systems: A Case Study

5. Numerical modeling of sprinkler piping subsystems

                            

            

OpenSees model
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Seismic Fragility Analysis of 
Sprinkler Piping Systems: A Case Study

5. Numerical modeling of sprinkler piping subsystems

– OpenSees numerical analysis - black iron threaded -
NFPA-13 bracing - MCE intensity.
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Seismic Fragility Analysis of 
Sprinkler Piping Systems: A Case Study

6. Fragility analysis of sprinkler piping systems

Sa,T1 (10 ground motions) Sa,T1 (44 ground motions) Difference

Geometric Mean 0.494 g 0.479 g 3.0%

Median 0.512 g 0.488 g 4.7%

Arithmetic Mean 0.543 g 0.517 g 4.8%
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Seismic Fragility Analysis of 
Sprinkler Piping Systems: A Case Study

6. Fragility analysis of sprinkler piping systems
– Incremental dynamic analysis curves for sprinkler piping system

– Intensity measure: Peak Floor Acceleration (PFA)
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Seismic Fragility Analysis of 
Sprinkler Piping Systems: A Case Study

6. Fragility analysis of sprinkler piping systems

– First leakage fragility curves
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Impediments to Incorporating 
Nonstructural Design into Practice

• The problem
– Close collaboration between architects and structural 

engineers understood to be highly desirable and has 
become practice within Europe and North America.

– Not the case with design and installation of 
Nonstructural Components. 

– Often lack of design integration of structural 
engineering and engineering of Nonstructural 
Components.

– Brought to focus in California by SB 1953 in California.
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Impediments to Incorporating 
Nonstructural Design into Practice

• Reasons for lack of integration between 
Structural and Nonstructural Engineering
– Traditional roles cloud responsibility

• Five major stakeholders typically involved in traditional 
building design process: 
– Architect;

– Structural engineer; 

– Electrical engineer; 

– Mechanical engineer; 

– Specialty consultants and subcontractors often designing 
Nonstructural Components.
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Source: FEMA 454
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Impediments to Incorporating 
Nonstructural Design into Practice

• Reasons for lack of integration between 
Structural and Nonstructural Engineering
– Traditional roles cloud responsibility

• Building construction generally under oversight of a 
project architect responsible for project management.
– Architects are rarely engineers. 

• Sometimes structural engineer designated responsible for 
seismic design of Nonstructural Components
– Rarely structural engineers experienced in specifying 

appropriate seismic design and installation of plumbing, 
heating, venting, electrical, and other Nonstructural specialties.

– Structural engineers do not want to work on Nonstructural 
design problems.
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Possible solution: Design Build Contracting 
— the Master Builder Concept

• Single source has absolute accountability for 
both design and construction.

• Owner contracts with a single firm to design 
and build the facility.

• Tools currently available for implementation:
– Concurrent Engineering;

– Lean Construction;

– Building Information Modeling (BIM).
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Building Information Modeling (BIM) for 
Integrated Seismic Assessment and Design

BIM



October 29, 2015 Pavia, Italy

BIM for Integrated Seismic 
Assessment and Design

BIM
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BIM for Integrated Seismic 
Assessment and Design

BIM
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www.sponse.eu 
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UME Graduate Course on the Seismic Design of 
Non-structural Elements
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Final Thoughts
• In 1914, Professor Modesto Panetti from Istituto Superiore di 

Torino wrote:
– …the effects of earthquakes on structures are in fact a structural 

dynamics problem, which is much too complicated to address…

• In 2015, the earthquake engineering community still believes:
– …the effects of earthquakes on nonstructural nomponents are in 

fact a structural dynamics problem, which is much too complicated 
to address…

• Today, I believe that we have the tools to develop 
performance-based seismic design for nonstructural 
components the same way it was done for structural 
components. Now is the time for structural engineers to take 
responsibility and start doing it!
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Thank you!


